
UNCLASSIFIED

UNCLASSIFIED

Security Architecture and Design Documentation Guidance

DEVELOPMENT REPRESENTATION DOCUMENTATION (DRD)

Version 1.6

Prepared by HR CDS TT

23 June 2011

UNCLASSIFIED

UNCLASSIFIED
[2]

REVISION HISTORY

Name Date Reason For Changes Version

HR CDS TT 24 May 2010 Document creation 1.0

HR CDS TT 16 September 2010 Review and update by Tiger Team 1.1

HR CDS TT 16 September 2010 Review and update by Tiger Team 1.2

HR CDS TT 13 January 2011 Review and update by Tiger Team 1.3

HR CDS TT 3 March 2011 Review and update by Tiger Team 1.4

HR CDS TT 19 April 2011 Review and update by Tiger Team 1.5

HR CDS TT 23 June 2011 Update by Tiger Team 1.6

UNCLASSIFIED

UNCLASSIFIED
[3]

ACRONYMS AND DEFINITIONS

Acronym Definition

CCA Covert Channel Analysis

CDS Cross Domain Solution

DRD Development Representation Documentation

DTLS Descriptive Top-Level Specification

FTLS Formal Top-Level Specification

HLD High Level Design

LLD Low Level Design

SFS Security Functional Specification

SP Security Policy

UNCLASSIFIED

UNCLASSIFIED
[4]

INTRODUCTION

The Development Representation Documentation (DRD) is a document set that must address

the following topic areas (as appropriate for the desired robustness level):

1. security problem,

2. security objectives,

3. security policy,

4. security architecture,

5. security requirements,

6. security functional specification (SFS),

7. high level design (HLD),

8. low level design (LLD),

9. system security policy model,

10. formal top level specification (FTLS),

11. descriptive top level specification (DTLS)

12. covert channel analysis,

This documentation set provides information about the system’s design and directs the

implementation. It provides evidence of the effectiveness of the design and implementation and

demonstrates the following properties
1
:

1. The security functionality addresses the intended security problem.

2. The security functionality is implemented correctly and is sufficiently resistant to

corruption and bypass.

It should be noted that both properties need to be realized. Trust in system security may increase

as confidence in these properties increase.

The paradigm for the documentation is one of design decomposition. Figures 1 through 3 depict

the decomposition for Medium, Medium-High and High robustness, indicating the relationships

among the various representations and the security objectives they are intended to address.

Each component of the design decomposition (e.g., functional specification, high and low level

design, and implementation representation) defines an instantiation of the design at a specific

level of detail.

The connectors shown in the figures represent the mappings necessary to show derivation and

correspondence between components. The structure of the mapping is not prescribed, however

must be described and included in the documentation set.

1 Suitability indicates the appropriateness of the functionality to address the security problem.
Implementation correctness and resistance to corruption and bypass address the assurance requirements
of the functionality.

UNCLASSIFIED

UNCLASSIFIED
[5]

Figure 1 – Documentation Paradigm for Medium Robustness

Security Problem

Security Objectives

Security
Requirements

Security Functional
Specification

High Level Design

Low Level Design

Implementation
Representation

Security Policy

Implementation
Covert Channel

Analysis

Security
Architecture

Source

corresponds to

Target

Source Target

is derived from

UNCLASSIFIED

UNCLASSIFIED
[6]

Figure 2 – Documentation Paradigm for Medium-High Robustness

Security Problem

Security Objectives

Security
Requirements

Security Functional
Specification

High Level Design

Low Level Design

Implementation
Representation

Security Policy

System Security
Policy Model

DTLS

Implementation
Covert Channel

Analysis

Security
Architecture

Source

corresponds to

Target

Source Target

is derived from

UNCLASSIFIED

UNCLASSIFIED
[7]

Figure 3 – Documentation Paradigm for High Robustness

Security Problem

Security Objectives

Security
Requirements

Security Functional
Specification

High Level Design

Low Level Design

Implementation
Representation

Security Policy

System Security
Policy Model

FTLS

DTLS

Implementation
Covert Channel

Analysis

Security
Architecture

Source

corresponds to

Target

Source Target

is derived from

UNCLASSIFIED

UNCLASSIFIED
[8]

 Security Problem: A concise statement of the organizational policies and procedures that

the system has to implement, including the functional goals of the system, a description

of the operational environment, the levels of data, and the acceptable level of residual

risk.

 Security Objective: A statement of the intent to satisfy identified organization security

policies and/or assumptions and to counter identified threats. A concise statement of the

intended response to the security problem.

 Security Policy: A set of rules that regulate how resources are managed, protected, and

distributed within a system that are further expressed by the security requirements.

 Security Architecture: A description of how the security principles (e.g., separation,

isolation, least privilege, encapsulation, layering and modularity) are realized by the

security design. An informal description of the overall design of a system that delineates

each of the protection mechanisms employed. A combination of the formal and informal

techniques used to show that the security mechanisms are adequate to enforce the

security policy.

 Security Requirements: A clear, unambiguous, and well-defined description of the

expected security behavior of the system.

 Security Functional Specification: A description of the system security interfaces and

how they function. This consists of all means by which external entities (or subjects in

the system but outside of the system’s security functions) supply data to the system

security functions, receive data from the system security functions, and invoke services

from the system security functions.

 High Level Design: A description of the security functions in terms of major structural

units (i.e. subsystems) and relates these units to the functions that they provide.

 Low Level Design: Provides more granular design information for each subsystem,

including hardware, software, services and interfaces. It provides sufficient design detail

to enable the production of the implementation representation.

 System Security Policy Model: Identifies the entities to be protected, who/what is

allowed to access those entities, under what conditions, and in what ways. Depending

upon the level of robustness required, the model may be expressed in a formal or

semiformal manner. A formal representation of the model captures the entities being

modeled and their relationships in a mathematically precise manner. Also, the security

objectives are stated as theorems that are proven as part of the modeling process. A

semiformal representation of the model captures the entities being modeled and their

relationships in a natural language with precise semantics.

 Formal Top Level Specification (FTLS): A formal high-level description of the system

that is used to prove the policy is satisfied.

 Descriptive Top Level Specification (DTLS): Completely and accurately describes the

system in terms of its assumptions, assertions and error messages.

 Covert Channel Analysis: Identifies and potentially measures information flows in

violation of the security policy.

 Implementation representation: The detailed internal workings of the security functions.

This may be software source code, firmware source code, hardware diagrams and/or chip

specifications.

 Implementation: The executable instantiation of the system.

UNCLASSIFIED

UNCLASSIFIED
[9]

DISCUSSION

The system security functionality consists of all parts of the system that have to be relied

upon for enforcement of the system security policy. The security functions includes both

functions that directly enforce the system security policy and also those functions that, while not

directly enforcing the system security policy, contribute to the enforcement of the system

security policy in a more indirect manner. As an example, functions that have the capability to

cause the system security policy to be violated or portions of the system that are invoked on

system start-up that are responsible for putting the system in its initial secure state.

The over-riding notion for the development representation documentation is that, as more

information becomes available, greater assurance can be obtained that the security functions are

correctly implemented, cannot be compromised, and cannot be bypassed. This is done through

the verification that the set of development documentation is correct and consistent. This

documentation provides information that can be used to ensure that the testing activities (both

functional and penetration testing) are comprehensive.

It is generally the case for CDSs that there are portions of the security functions that deserve

more intense examination than other portions of the security functions.

Functions are considered to be “security enforcing” if they directly implement a portion of the

system security policy. Security enforcing functions make the decisions regarding system

operations with respect to the system security policy.

Functions are considered to be “security supporting” if they are trusted to preserve the

correctness of the system security policy by operating without error. Such functionality enables

or “carries out” the decisions of the security enforcing functions. Domain separation, process

isolation, resource encapsulation, and memory management are all examples of security

supporting functionality that enable the security enforcing functions. Input/output operations are

examples of the security supporting functionality that “carries out” the decisions of the security

enforcing functions.

Functions are considered to be “security non-interfering”
2
 if they do not enforce or support any

aspect of the system security policy but, due to their presence inside the security boundary, they

must be correct or they could adversely affect the correct implementation of the security policy.

Security non-interfering functions have no role in implementing the security policy, and are

likely part of the security functionality because of their environment; for example, any code

running in a privileged hardware mode within an operating system. Such functions need to be

considered part of the security functionality because, if compromised (or replaced by malicious

code), it could compromise the correct operation of a security function by virtue of its operating

in the privileged hardware mode. An example of security non-interfering functionality is a set of

mathematical floating-point operations implemented in kernel mode for speed considerations.

All three of the above types of functions (i.e., security enforcing, security supporting, and

security non-interfering) are “security relevant”.

The architecture documentation provides a description of the system architecture based on

security principles and how they combine to satisfy the system security policy. These

architectural artifacts are at least as important, if not more important, than the security functions.

If these artifacts are not present, it will likely lead to a failure of the mechanisms implementing

the security functions.

The difference in analysis of the implementation of the security functionality and of the

implementation of the security principles is that the functionality is more or less directly visible

2 This is not to be confused with the Non-Interference security model first articulated by Goguen and
Meseguer.

UNCLASSIFIED

UNCLASSIFIED
[10]

and relatively easy to test, while the security principles require varying degrees of analysis.

Further, the depth of analysis possible for these principles will vary depending on the design of

the system.

The amount and structure of the design documentation will depend on the complexity of the

system and the number of security requirements; in general, a very complex system with a large

number of security requirements will require more design documentation than a very simple

system implementing only a few security requirements.

PRESENTATION

The information about each DRD topic area is required, rather than a particular document set

structure; therefore, it is not necessary for every DRD topic area to be in a separate document
3
.

Indeed, it may be the case that a single document meets the requirements for more than one topic

area. In cases where multiple topic areas are combined within a single document, the developer

must indicate which portions of the document apply to which topic areas.

FORMALITY

Three types of specification style are mandated by this DRD: informal, semiformal, and

formal. The functional specification and system design documentation are always written in

either informal or semiformal style. A semiformal style reduces the ambiguity in these

documents over an informal presentation. A formal specification may also be required in

addition to the semi-formal presentation; the value is that a description of the security functions

in more than one way will add increased assurance that the security functions have been

completely and accurately specified.

An informal specification is written as prose in natural language (i.e., English). An informal

specification is not subject to any notational or special restrictions other than those required as

ordinary conventions for that language (e.g. grammar and syntax). While no notational

restrictions apply, the informal specification is also required to provide defined meanings for

terms that are used in a context other than that accepted by normal usage.

The difference between semiformal and informal documents is more than a matter of formatting

and presentation: semiformal notation includes such things as an explicit glossary of terms, a

standardized presentation format, etc. The presentation should use terms consistently and may

also use more structured languages/diagrams (e.g. data-flow diagrams, state transition diagrams,

entity-relationship diagrams, data structure diagrams, and process or program structure

diagrams). The glossary identifies the words that are being used in a precise and consistent

manner; similarly, the standardized format implies that extreme care has been taken in

methodically preparing the document in a manner that maximizes clarity. It should be noted that

fundamentally different portions of the system might have different semiformal notation

conventions and presentation styles (in such cases, a mapping must be provided).

 A formal specification is written in a notation based upon well-established mathematical

concepts, and is typically accompanied by supporting explanatory (informal) prose. These

mathematical concepts are used to define the syntax and semantics of the notation and the proof

rules that support logical reasoning. The syntactic and semantic rules supporting a formal

notation should define how to recognize constructs unambiguously and determine their meaning.

There needs to be evidence that it is impossible to derive contradictions, and all rules supporting

the notation need to be defined or referenced.

3 Documentation may take a number of forms. Any tools (including training and support) necessary to
read and understand the documention shall be provided.

UNCLASSIFIED

UNCLASSIFIED
[11]

The formality of the presentation of the DRD topic areas vary from Informal (I), Semiformal

(SF) and Formal (F) depending on a number of factors. Some topic areas, such as the problem

statement need to be generally understood and therefore are presented informally. Higher levels

of robustness may require the presentation to be in a more formal manner. Table 1 summarizes

the presentation formality with the corresponding levels of robustness. The DRD topic areas and

assurance levels not listed in Table 1 require informal presentation.

Table 1 – DRD topic areas and corresponding formality based on levels of robustness.

 Medium Medium High High

Security Policy I SF SF

Policy Model SF F F

FTLS N/A N/A F

DTLS N/A I I

HLD I SF SF

LLD I I + SF SF + F

Security Architecture I SF SF

CCA4 I SF F

4 Further guidance on CCA requirements and presentation is found in the CCA guidance document.

